Ammoniak als schone brandstof

ammoniakbusEen Belgische bus die op ammoniak reed (1943)

Je verzint het nooit zelf: ammoniak als brandstof. Toch is dat een serieuze optie  van John Holbrook. Hij heeft een eigen bedrijf opgericht, NHThree, dat dat idee moet vermarkten. Als brandstof doet ammoniak het helemaal niet zo slecht. Op de webstek van NHTree zijn wat cijfers te lezen: de energieinhoud van een liter ammoniak ligt op het niveau van methanol, maar is ruim anderhalf keer zo hoog als die van een liter waterstof (vloeibaar): zo’n 17 MJ tegen 10. Verbranding van ammoniak levert slechts water en stikstof op, broeikastechnisch onschuldige verbindingen en het is een bewezen techniek. In de tweede wereldoorlog reden er in België bussen op ammoniak. Er is alleen een groot MAAR: ammoniak vind je nergens op aarde, maar moet ten koste van veel energetisch geweld worden geproduceerd uit water(stof) (tegenwoordig meestal methaan) en stikstof (Haber-Bosch-proces).
Is die Holbrook dan een fantast? Niet per se. Zelfs het serieuze Britse populair wetenschappelijke New Scientist brengt het nieuws van de nieuwe oude brandstof zonder erbij te smalen. Eerder dit jaar heeft de Italiaanse bandenmaker Marangoni een hybride benzine/ammoniak-motor gebouwd, de Marangoni Toyota GT 86-R Eco-Explorer. De auto rijdt 178 km op één tank ammoniak.
Het probleem is dus: waar haal je energetisch gezien goedkoop ammoniak vandaan? Nu is de productie van ammoniak, wezenlijk voor de vervaardiging van kunstmest, in zijn eentje goed voor 2 tot 3% van het wereldenergieverbruik (met bijbehorende kooldioxide-uitstoot van meer dan 1 miljard ton). De truc is dus ammoniak met minder energie te maken, anders kom je van de regen in de drup.

energiedichtheid diverse brandstoffen (bron NHTree) De energiedichtheid van verschillende brandstoffen. In het zwart het koolstofaandeel in die dichtheid, groen het aandeel van waterstof (bron: NHTree).

Holbrook denkt met een nieuw ontwikkeld proces dat voor elkaar te hebben, het SSAS-procédé (Engelse afko voor vastestofammoniaksynthese). Het hart van het proces is een protondoorlatend membraan (een proton is een waterstofkern). Dat membraan wordt tot 550 *C verwarmd. Aan de ene kant van het membraan bevindt zich waterdamp, aan de andere kant stikstof. Water splitst gedeeltelijk in protonen en zuurstofionen. De protonen worden door een spanningsverschil door het membraan naar het stikstofcompartiment gedreven. De protonen reageren met stikstof tot het gewenste ammoniak. Het SSAS-proces zou ammoniak energetisch voordeliger produceren dan het aloude Haber-Bosch-proces (alleen vermeldt Holbrook nergens hoeveel minder) en er zou bij de productie geen fossiele brandstoffen worden gebruikt. Vraag is dan alleen waarmee je dat membraan verhit tot 550 °C. Er wordt een prototype uitgeprobeerd door  Pacific Northwest National Laboratory in Richland, Washington. Die proef schijnt gesmeerd te lopen en de plannen zijn in Alaska (Juneau) een proeffabriek te bouwen, waarbij windenergie voor de benodigde energie zou zorgen. Dat zou meteen een oplossing zijn voor de overmaat aan energie uit windmolens; een vorm van energieopslag, dus. Dat systeem (wind en ammoniakproductie) zou Alaska een vorm van decentrale energie-opwekking geven. Er is daar geen stroomnet en vaak, door de lange winters, geen (berijdbaar) wegennet.
Een andere manier is het ammoniak ‘uit de lucht te plukken’ zoals Mike Reese van de universiteit van Minnesota doet met een andere techniek dan die van Holbrook, waarbij waterstof voor de reactie wordt geproduceerd via elektrolyse. Reese gebruikt een windturbine van 1.35-megawatt  om ammoniak te maken. Meese et.al. hopen aan het eind van het jaar 25 ton ammoniak te hebben geproduceerd voor de productie van kunstmest voor de plaatselijke boeren. Heeft Haber-Bosch zijn langste tijd gehad en krijgen we een schone want koolstofloze brandstof. Wie zal het zeggen? En hoe zit het trouwens met de geur. Ammoniak ruikt nogal ‘doordringend’….

Bron: New Scientist

Maak van de nood een deugd: zet kooldioxide om in energie

Energie uit een broeikasgas? Maak van de nood een deugd en zet het broeikasgas CO2 om in energie. Jaarlijks stoten elektriciteitscentrales miljarden tonnen kooldioxide in de atmosfeer (12 miljard), huishoudens voegen daar nog eens 11 miljard ton aan toe. Uit de schoorsteen van een krachtcentrale ligt het aandeel van kooldioxide in het afgas op zo’n 10% (ruim 12% voor kolen- en 7,5% voor gascentrales). Daar valt wat mee te doen, bedachten Bert Hamelers en medewerkers van het Friese onderzoeksinstituut Wetsus. Hun idee is CO2 te laten reageren met water of andere vloeistoffen. Daarmee zou wereldwijd 1570 TWh aan energie kunnen worden opgewekt becijferen de onderzoekers, ruim 400 keer wat de Hooverdam in Amerika aan witte energie oplevert. Het artikel van de Nederlandse onderzoekers is gepresenteerd  in het nieuwe tijdschrift Environmental Science & Technology Letters van de Amerikaanse chemievereniging ACS.
Het principe van het idee berust op het vrijkomen van mengenergie als twee vloeistoffen of gassen worden gemengd. Die energie wordt ‘geoogst’ door het met lucht gemengde kooldioxide te leiden door een waterige oplossing waarin twee elektroden staan, elk omhuld door een, verschillend, ionselectief membraan (AEM en CEM in het plaatje). Daardoor ontstaat er een spanningsverschil tussen beide elektrodes en, voilá, je hebt elektrische energie. Het rendement van die omzetting is afhankelijk van de gebruikte vloeistof: gedeïoniseerd water komt tot 24%, water met een scheutje monoethanolamine (MEA) 32%.
Meteen doen, zou je zeggen, maar er zit wel een addertje onder het gras. De energie die het kost om het gas te mengen met de elektrolyt (=water al of niet met toevoeging) kost meer dan het systeem aan warmte oplevert, vertellen de auteurs in hun artikel. Af door zijdeur? Niet dus, laat Wetsus weten. Een is het (h)erkennen van een mogelijke energiebron, twee is laten zien dat het werkt en drie is een methode te zoeken om het idee om te zetten in de praktijk. Er zijn al ideetjes om dat laatste te verwezenlijken, zoals het gebruik van andere type membranen. Er wordt al energie gewonnen uit de menging van zout en zoet water. De energiedichtheid van de kooldioxide-route is veel groter dan die van de zoet-/zoutwatermenging, betogen de auteurs in hun artikel en het zou zonde zijn die potentie te verwaarlozen. Misschien valt er nog voordeel te doen met de methoden als RED en PRO die bij de watermenging worden gebruikt, stellen ze.

Bron: Eurekalert

Stikstof reageert met grafeen door ‘mechanische’ scheikunde

 

Stikstofgrafeen

In een capsule gevuld met stikstof, grafeen en kogeltjes, werd stikstof ‘mechanisch’ verbonden met koolstof. Het onstane stikstofgrafeen zou een prima vervanger zijn van platina in zonne- en brandstofcellen.

80% van de aardatmosfeer bestaat uit stikstof in de vorm van een atoompaar. Dat stikstofmolecuul reageert moeilijk met andere verbindingen en elementen. Bij een proces om ammoniak te maken, het Haber-Bosch-proces, wordt stikstof met veel ‘geweld’ (ruim 400°C en drukken van 10 tot zo’n 100 MPa (= 1000 atmosfeer)) aan waterstof gekoppeld. Een onderzoeksgroep aan de Zuid-Koreaanse Ulsan-instituut voor wetenschap en technologie heeft een aanzienlijk milieuvriendelijker en goedkopere manier ontwikkeld om stikstof te laten reageren met grafeen (een verschijningsvorm van koolstof). De groep rond Jong-Beom Baek mengde stikstof met grafeen met behulp van stalen kogels van een halve centimeter in diameter. Stikstof bleek zich te binden aan de koolstofatomen in het grafeen wier band met een ander koolstofatoom door de kogeltjes waren ‘stukgeslagen’. Geen hoge drukken en temperaturen meer, zo lijkt het, want als stikstof eenmaal een verbinding is aangegaan, dan reageert het makkelijk(er) verder met andere elementen en verbindingen.

Dat zou een richting kunnen zijn, maar het genitrogeneerde grafeen zou ook een prima vervanger kunnen zijn voor de platina-elektrodes die worden gebruikt in ‘organische’ zonnecellen en PEM-brandstofcellen, beide min of meer duurzame energietechnieken. Grafeen is wel een kandidaat als platina-vervanger, maar met de huidige technieken wordt de vervaardiging van een koolstof-elektrodes veel te duur, schrijven de onderzoekers in Scientific Reports van het blad Nature. Het goedkoop te produceren stikstofgrafeen zou een uitstekend alternatief zijn, denken zij.

Bron: Science Daily

Rijstkaf kan leven lithiumbatterijen verlengen

Lithiumbatterijen zijn populair vanwege hun lage gewicht en  grote energiedichtheid, maar er valt nog wel wat aan te verbeteren. De elektroden van de batterijen bestaan uit grafiet (een vorm van koolstof), maar door de steeds herhaalde cycli van laden en ontladen vallen die elektroden op den duur uit elkaar, omdat die laadcycli gepaard gaan met het zwellen en krimpen van de elektroden als gevolg van de ‘mobiliteit’ van het lithium-ion.
Silicium zou een goede vervanger zijn van grafiet, omdat een batterij met siliciumelektroden 10 keer meer lading kan bevatten dan met grafiet. Het probleem is alleen dat silicium nog sneller uit elkaar valt door krimpen en uitzetten dan grafiet.
Er lijkt een uitweg te zijn: rijstkaf (de velletjes rond de rijstkorrel). Dat kaf is rijk aan siliciumoxide (silica). Volgens  Jang Wook Choi van het Koreaans Instituut voor wetenschap en technologie  in Daejeon zouden gaatjes in het kafje, bedoeld om lucht door te laten, er voor kunnen zorgen dat het daaruit gewonnen silicium poreus wordt. In die poriën is dan plaats voor de lithium-ionen/-atomen, zodat de elektrode door laden en ontladen niet steeds opzwelt en inkrimpt.
Om te kijken of dat idee ook werkt heeft Choi silica uit kaf (silica is siliciumdioxide oftewel zand) omgezet in puur silicium en daarvan elektroden voor batterijen gemaakt. Na 200 laad-/ontlaad-cycli bleek de batterij niet achteruit te zijn gegaan. Normaal gaat het bij een batterij met op de klassieke wijze geproduceerd silicium na 10 tot 15 cycli al bergafwaarts. Of de poreuze kafelektroden ook daadwerkelijk zullen worden toegepast is afhankelijk van de uiteindelijke kosten in vergelijking met die van grafiet-lithiumbatterijen. Het is al  bewezen dat siliciumelektroden met kunstmatige nanostructuur werken. Dan kunnen we maar beter de ‘natuurlijke’ route nemen, denkt Choi.

Bron: New Scientist

Obama gelooft in klimaatbeheersing (zegt ie)

Aardopwarming
Gaat het er dan eindelijk van komen dat Amerika, ’s werelds grootste ‘producent’ van het broeikasgas kooldioxide, nu eindelijk eens werk gaat maken van het terugdringen van de emissie van dit gas? Ergens tussen Noord-Ierland en Duitsland, of misschien wel in Duitsland, heeft president Obama gezegd dat er werk gemaakt moet worden van het terugdringen van de broeikasgasuitstoot. “We kunnen onze kinderen niet opzadelen met een minder bewoonbare planeet. (…) De emissies zijn teruggelopen, maar we zullen er meer aan moeten doen.” Volgens Heather Zichal, een adviseur van Obama op het gebied van energie en klimaat, zal de aandacht vooral gaan naar het terugdringen van de uitstoot van krachtcentrales, verhoging van rendement en de verdere ontwikkeling van schone technologie. Het Amerikaanse milieu-agentschap EPA zou al werken aan een aanscherping van de regels met betrekking tot de uitstoot van kooldioxide. Eerder deze maand sprak Obama met China af om gezamenlijk de emissie van HFK’s (fluorkoolwaterstoffen, gebruikt als koelmiddelen) terug te dringen. HFK’s zijn aanzienlijk ‘heftiger’ broeikasgassen dan kooldioxide.
Het klinkt mooi, maar bij Obama heb ik toch steeds vaker de gedachte: eerst zien en dan geloven.

Bron: Washington Post

Kooldioxide-uitstoot 2012 op recordhoogte

Het vorig jaar is wereldwijd zo’n 31,6 miljard ton kooldioxide in de aardatmosfeer terechtgekomen (+ 1,4%), zo heeft het Internationale Energie-agentschap (IEA) becijferd. “Daarmee wordt ons doel, de aarde niet meer dan twee graden te laten opwarmen, steeds moeilijker te realiseren”, zei IEA’s hoofdeconoom Fatih Birol. Als er geen omslag komt, dan stevenen we af op een opwarming van 4 graden in 2100. Volgens de IEA is de industrie verantwoordelijk voor tweederde van de uitstoot van broeikasgassen.
Deze sombere berichten worden enigszins gemilderd door lichtpuntjes uit China en de VS, ’s werelds grootste economieën. Door de overstap van kolen op gas is de uitstoot van de VS weer op het niveau van de jaren ’90. De uitstoot van China steeg minder dan in de voorgaande jaren.
Daarentegen baart Europa zorgen. In Duitsland is de kooldioxide-uitstoot met 2,2 % gestegen en in Groot-Brittannië met 4,5 %. Dat heeft alles te maken met de lage kolenprijzen. In Japan laten zich de gevolgen van de kernramp in Fukusjima voelen. Als gevolg van de minder florissante economie, ligt het niveau van geheel Europa nog wel 1,4 % lager dan in 2011. De investeringen in duurzame energie zijn echter ook teruggelopen.
Er zouden, als het aan de IEA lag, geen nieuwe kolencentrales meer mogen worden gebouwd en de minst rendabele centrales zouden uit bedrijf genomen moeten worden. Er zou al 18% van de beoogde reductie van broeikasgassen worden gehaald als oliebedrijven zouden voorkomen dat bij de winning van olie en gas methaan in de atmosfeer terecht zou komen. Methaan (aardgas) is een ‘sterker’ broeikasgas dan kooldioxide. Nog eens 12% van die reductiedoelstelling zou worden gehaald als overheden ophielden het verbruik van fossiele brandstoffen te subsidiëren. “Dat kan allemaal met bestaande technologieën en met maatregelen die in sommige landen al worden getroffen”, zei Birol.

Bron: Der Spiegel

Fusiereactor rond

Fusiereactor Wendelstein X-7 Eind mei is de laatste las gelegd in de ruwbouw van de fusiereactor in het Duitse Wendelstein. De Wendelstein 7-X zal volgend jaar in bedrijf worden genomen door het Max Planck-instituut voor Plasmafysica. De vormgeving van de reactor is ingegeven door de techniek. Anders dan de ‘gebruikelijke’ tomahak-reactor, een soort appelbeignet, is de vorm van deze stellator-reactor gegolfd. De reactor in Duitsland wordt de grootste die gebouwd is volgens deze stellator-techniek, hetgeen overigens niet zo’n grote kunst is, omdat er weinig fusiereactoren op de wereld staan. Die er staan hebben een ringvormige reactor (tokamak). De fusiereactor is bedoeld voor experimenten en levert geen elektriciteit.
Kernfusie is al vijftig een grote belofte met als constante factor dat het nog vijftig jaar duurt voordat er commerciële fusiecentrales zullen zijn. Op het ogenblik is in het Franse Cadarache de ITER in aanbouw. Die moet in 2018 klaar zijn. Het zou de eerste fusiereactor (kunnen) zijn die niet alleen energie opslurpt, maar die ook energie produceert.

Bron: Der Spiegel

‘Kunstboom’ produceert een beetje waterstof

De 'kunstboom' bootst de natuurlijke fotosynthese in planten na (foro ScienceDaily)
Of het nou de doorbraak is die al zo vaak is beloofd op het gebied van de omzetting van zonne-energie in voor ons arme mensen bruikbare vorm is nog maar de vraag, maar het lijkt de goede kant op te gaan. In de VS heeft Peidong Yang van het onderzoeksinstituut Lawrence Berkeley National Lab samen met enkele andere onderzoekers een kunstmatige boom ontwikkeld die zonne-energie, direct omzet in waterstof. Daarbij is de natuurlijke fotosynthese in chloroplasten in plantencellen min of meer nagebootst. Het kunstmatige fotosynthesesysteem bestaat uit twee lagen halfgeleiders (titaanoxide en silicium) die licht absorberen, een tussenlaag voor het ladingtransport en ruimtelijk gescheiden katalysatoren. “Om de splitsing van water in waterstof en zuurstof te vergemakkelijken hebben we structuren gemaakt van nanodraden met stammen van silicium en takken van titaanoxide. Dat ziet er heel erg uit als een kunstmatig bos”, zegt Yang in ScienceDaily. “In de natuurlijke fotosynthese wordt de energie uit het zonlicht gebruikt om allerlei reacties in het chloroplast te doen plaatsvinden. Wij hebben de nanoheterostructuur geïntegreerd op een manier die daarop lijkt, waarmee we een hoger rendement in de omzetting van zonne-energie naar brandstof kunnen verwezenlijken in de toekomst.” In een plant wordt met behulp van licht (=energie) kooldioxide omgezet in koolwaterstoffen zoals suikers. Dat gaat via wat genoemd wordt een Z-schema: de elektronen die bij de reacties betrokken zijn maken een beweging als een Z op zijn kant. Yang en zijn collega’s imiteerden in hun ‘kunstboom’ dat patroon. Het silicium is er voor de waterstofproductie (fotokatode). Bij titaanoxide ontstaat zuurstof (anode).
De structuur moet de opbrengst van de ‘kunstboom’ maximaliseren. Door de fijne nanodraden (nano staat voor 1 miljoenste millimeter) is het effectieve oppervlak groot, waardoor de ‘boom’ een relatief hoog rendement heeft, al zal niemand met zijn ogen knipperen als ie hoort dat dat maar een heel bescheiden 0,12% is. Dat is vergelijkbaar met wat planten presteren, maar dat moet voor menselijk gebruik toch drastisch omhoog. Yang is optimistisch: “We hebben goede ideeën om stabiele fotoanodes te ontwikkelen die beter presteren dan titaanoxide. Ik ben er van overtuigd dat we het rendement kunnen opschroeven tot in de hele procenten.”

Bron: ScienceDaily

Passief koelsysteem ‘schiet’ warmte de ruimte in

Het Franse webblad Futura-Sciences kwam onlangs met een tikkeltje belegen verhaal, maar daarom niet minder interessant, over het passief koelen van gebouwen. Vooral in Amerika worden gigantische hoeveelheden aan energie verspild met het koelen van gebouwen in de zomer. Aan de Amerikaanse universiteit van Standford hebben ze nu een systeem ontwikkeld waarmee je gebouwen ’s zomers kunt koelen zonder dat de elektriciteitsmeter loopt. Het systeem zou energetisch voordeliger zijn dan een koelsysteem dat draait op zonnecellen.
Dit passieve koelsysteem zou een hoop elektrische energie besparen Het koelen van gebouwen is aanleg simpel: je kaatst het zonlicht (inclusief de warmte) terug. Dat werkt een klein beetje. Het grootste deel van de warmte komt toch wel via een omweg in het gebouw. Bovendien wordt de reflector zelf warm waardoor er van koelen niks meer terecht komt. De Stanford-onderzoekers, aangevoerd door Shanhui Fan, zeggen dat hun passieve koelsysteem zelfs midden overdag in de zomer koelt.
Om dat te bewerkstelligen moet het systeem zo veel mogelijk zonlicht terugkaatsen, zonder zelf warm te worden, en de warmte-energie uit het gebouw zelf zo ver mogelijk de ruimte in ‘schieten’. Dat is lastig want de meeste straling blijft in de atmosfeer hangen (het welbekende broeikaseffect). De aardatmosfeer laat alleen warmte in een bepaald golflengtegebied door.
Het nu gerealiseerde systeem voldoet aan beide eisen: het kaatst een groot deel van het zonlicht terug en zendt een deel van de warmtestraling, waarvoor de aardatmosfeer ‘doorzichtig’ is, de ruimte in waardoor het ‘bepaneelde’ gebouw dus (passief) koelt. De onderzoekers fabriceerden een fotonische nanostructuur die het zonlicht terugkaatst (op het plaatje de gele piek links) en de warmte van het gebouw weg ‘schiet’ (de twee paarse pieken rechts op het plaatje). Het materiaal bestaat vooral uit kwarts en silciumcarbide (zie plaatje bij a). Beide stoffen absorberen weinig zonlicht. De capaciteit van de nanopanelen ligt op zo’n 100 W per vierkante meter. Dat betekent dat als de Sanford-panelen 10% van het dak van een eensgezinswoning zouden bedekken, daarmee 35% op de (elektrisch aangedreven) koelcapaciteit zou kunnen worden bespaard, zo geeft de universiteit in een bericht als rekenvoorbeeld. De techniek lijkt een grote toekomst tegemoet te gaan, want uiteraard wordt het niet alleen in de VS ’s zomers warm.

Bron: Futura_Sciences (foto Sandford)

Bacterie scheidt diesel af (in geringe hoeveelheden)

E coli's maken diesel (foto BBC) Aan de universiteit van Exeter (Engeland) zijn onderzoekers onder aanvoering van John Love er in geslaagd een E-coliebacterie genetisch zo te verbouwen dat ie diesel ging maken. De hoeveelheden zijn niet erg indrukwekkend (je hebt 1000 litermet E coli’s nodig om een theelepeltje diesel te krijgen), maar volgens Love is het een begin, maar, wat belangrijker is, de bacterie produceerde een brandstof die qua chemische samenstelling ‘sprekend’ op een fossiele brandstof lijkt. De meeste vormen van biodiesel en bioethanol zijn niet direct bruikbaar in de conventionele automotor. Als bijmenging bij brandstof uit fossiele bron is biobrandstof wel bruikbaar, maar niet ‘puur’. Om de automotor aan de praat te houden moeten er stoffen worden bijgemengd. De ‘diesel’ uit Exeter heeft, vertelt Love tegen de BBC wél de juiste samenstelling. De auto zou er niets van merken als Love’s diesel zou worden getankt.
Het is nu zaak de productie op te voeren. De assistent-hoogleraar geeft zichzelf drie tot vijf jaar om de beestjes, uitgaande van suiker, aan te zetten tot een hoger productie.

Bron: BBC